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Bismuth telluride and its alloys are the most important thermo-

electric materials for applications near room temperature. In the past,

it has always been made n-type by adding a foreign impurity. In the

first section of this report, some measurements are reported on material

made n-type by adding excess tellurium. At very low temperatures, the

electron mobility is about ten times larger than has been previously

reported. In the temperature range where the material is a useful thermo-

electric material, there is little change in the mobility. However, the

larger mobility at helium temperatures may allow one to do experiments

such as cyclotron resonance which will give a better measurement of the

electronic band structure than has been possible previously.

The second paper gives the results of an investigation of

the Seebeck coefficient, thermal conductivity, and electrical conductivity

of bismuth single crystals. Bismuth-antimony alloys have been used as

thermoelectric device elements for many years, and they have the highest

figure of merit of any material at temperatures near 100K. In this

work, some of the properties of the band structure and the lattice

thermal conductivity have been determined. The optimum figure of

merit of the material has been calculated.
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ABSTRACT

Samples of n-type bismuth telluride with carrier concentrations

between 3 x 1017 and 6 x 109 cm" 3 have been made by doping with excess

tellurium. The largest mobility at 4.2K is 1.8 x 105 cm2 /Vsec, approxi-

mately ten times larger than has been observed in n-type iodine doped

bismuth telluride. At a carrier concentration of about 5 x 1018 cm3,

there is a sharp change in slope of the curve of 4.2 0 K mobility vs

carrier concentration. Th se results are interpreted on the basis of

a two-band model. Seebeck coefficient measurements tend to confirm this

model.

I. INTRODUCTION

The compound Bi2Te3 is an anisotropic semiconductor with a

rhombohedral structure and a very pronounced cleavage. When grown from

a stoichiometric melt, it is p-type with a carrier concentration of the

order of 1019 holes/cm3. The reason for this high carrier concentration

is that the maximum melting composition is on the bismuth rich side of the
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stoichiometric composition (Offergeld and Van Cakenberghe, 1959) and hence

a crystal grown from a stoichiometric melt contains excess Bi. This excess

Bi acts as an acceptor in the crystal. Measurements of a ninber of different

properties of both n and p-type material have been made (for review of the

properties of Bi 2Te 3 , see Uret 1961) but the carrier concentration is

usially changed by adding a foreign impurity such as iodine. We have

reported earlier some &ata on n and p-type material in which the carrier

concentration was altered by changing the Bi :Te ratio in the crystal

(Satterthwaiteand Ure, 1957). Sladek (1959) has measured one of our

samples and found a 4.20K mobility approximately ten times larger than has

been reported elsewhere.

In this paper, we report measurements of Hall coefficient and

mobility over a wider range of temperature (4.20K to 250K) and carrier

concentration (3 x 1017 to 6 x 1019) tor n-type samples. We find mobilities

as high as 180,000 cm2/Vsec at 4.20K. At room temperature, the mobility is

about the same as for iodine doped samples.

I. EXPERIMENTAL

All samples measured were single crystals and were grown from

melts containing from 63 to 67 atomic percent tellurium. Both Bridgman

and zone leveling techniques were used. Considerable difficulty was

experienced in obtaining reasonably homogeneous samples, particularly

at carrier concentrations below 1018 cm 3 . In samples grown by the

Bridgmn procedure, there is a regular increase in the carrier concen-

tration fromthe bottom to the top of the crystal because of the increase

in Te content of the liquid as the crystal freezes. However, some uniform
samples were obtained bv cutting sempes perpendicular to the growth direction.
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cleavage planes and the current in the cleavage plane. Temperatures were

measured with a carbon resistor or with a copper-constantan thermocouple

both calibrated against a standard platinum resistor.

The measured. Hall coefficients are shown in Fig. 1. Carrier

concentrations, n. were calculated from the equation

n Br/Re ()

using the average of the two Hal.l measurements R at 770 K. Here B is a

factor depending on the band structure and is unity for spherical bands.

From magnetoresistance measurements on iodine doped samples, Drabble,

Groves, and Wolfe (1958) showed that the Bi 2Te 3 has a multivalley con-

duction band with highly oblate constant energy surfaces. They found

B = 0.326. .owever, Goldsmid (1961) and Walker (1960) have found that

this factor is a function of the carrier concentration in the specimen.

Because of the significant differences between the properties of iodine

doped and tellurium doped samples reported here, the factor my be

different in our samples. Because of these uncertainties, we have

not corrected our data, but have taken B 1 1. The factor r depends on

the scattering mechanism and the degree of degeneracy. We have taken

r = 1 since the scattering mechanisms have not been established. Hall

mobilities 4 were calculated from L = R77/p. Values of the Hall mobility

are shown in Fig. 2 and 3 and the resistivity p in Fig. 4. It must be
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remembered that the "carrier concentration" quoted mey be 3 times

larger than the true carrier concentration and that the Hall mobility

may be one-third of the conductivity mobility.

III. DISCUSSION

A. Hall Coefficient

The Hall coefficient, shown in Fig. 1, shows some variation

with temperature in the extrinsic region. With increasing temperature,

the Hall coefficient first falls slightly, goes through a shallow minimu

near the temperature of liquid nitrogen, and then goes through a slight

maximum before it falls rapidly as the samples become intrinsic. Yates

(1959) observed a similar behavior in iodine doped bismuth telluride.

In a semiconductor which has significant carrier densities in each of

two different conduction bands with extreme at different energies and

with different mobilities, the Hall coefficient vs temperature shows a

maximum. Thus the observed maximu is evidence for the two band picture

to be discussed later. The fact that sample D-13 with the lowest carrier

concentration does not show this maximum may be evidence that the energy

separation between the two bands is large enough that there are very few

carriers in the upper band in this sample. However, this sample was

fairly inhomogeneous.
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B. Hall Mobility

The largest Hall mobility observed is 1.8 x 105 cm2/Vsec in

sample B-2A with a "carrier concentration" of 9 x 1017 cm3 . This sample

was reasonably uniform. The two Hall coefficients differed by 7 percent

and the two resistivity measurements by one percent. This Hall mobility

is ten times larger than the largest mobility observed by Yates (1959)

on iodine doped samples.

In the region between 77"K and 2000 K, the mobility varies a

T-a where a is a constant. The values for a are given in Table 1.

Drabble, Groves, and Wolfe (1958), Goldsmid (1958), and Mansfield and

Williams (1958) have all found values very close to T "1.70 for iodine

doped material.

The most obvious explanation for these differences is that

iodine doped samples still have an appreciable density of excess bismuth

acceptors and hence are heavily compensated. Thus in an iodine doped

sample with a carrier concentration of 1018 cm3J there may be of the

order of 1019 ionized bismuth acceptors plus 1.1 x 10 19 ionized iodine

donors. Thus the density of ionized impurity centers is of the order

of 20 times as large as the carrier concentration. This ratio of the

density of ionized impurities to the carrier concentration will decrease

as the carrier concentration is increased by adding additional iodine.

In the tellurium doped samples this ratio is one. Thus we expect that

the difference between the mobility in iodine and tellurium doped samples

will be largest for low carrier concentrations and will decrease as the

carrier concentration increases. As shown on Fig. 3 this is indeed the

case.
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Since ionized impurity scattering becomes less important with

increasing temperature, the difference in the temperature variation of

the mobility in iodine and tellurium doped samples can be explained by

assuming that there is still a small amount of ionized impurity scattering

at 100°K in the compensated iodine doped samples. This idea is supported

by the fact that the mobility at 770 K for iodine doped samples is 25 to

35 percent smaller than in our tellurium doped samples. (Data on RH

and resistivity at 77°K in iodine doped samples taken from Drabble,

Grover, and Wolfe (1958) and Bowley, Delves, and Goldsmid (1958)].

However, Bowley, Delves, and Goldsmid (1958) have determined the value

of s in the expression for the relaxation time r -oESa from measure-

ments of the magneto-Seebeck effect, and they find a value close to the

theoretical value for acoustic mode lattice scattering. The difference

between their measured value and the theoretical value indicates that,

although the amount of ionized impurity scattering is small, the amount

of ionized impurity scattering increases with decreasing carrier con-

centration. Austin's (1960) free carrier absorption data indicate

some ionized impurity scattering at 77 K in iodine doped samples.

C. Magnitude of Mobility at 4.2°K

In the degenerate case, the mobility due to ionized impurity

scattering (Brooks, 1955; Dingle, 1955; and Mansfield, 1956) is
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I 3e2h 3n/161! 2 mmmde 3NIf(b), (2)

where

f(b) = tn(l+b)-b(l+b)-l

b = (3nln) 1/3(c 0h 2/l d a2)

o is the static dielectric constant, n is the carrier concentration,

mm is the mobility effective mass, m d is the density-of-states effective

mass, and NI is the concentration of scattering impurities. Brooks (1955)

has discussed the relation between the mobility mss and the mass tensor

for the individual valleys. For the purposes of our estimtes we will

take m = md . Austin (1958) has measured an optical dielectric constant

of 85. Since the static dielectric constant will be larger than this,

we will assume a value of 100. In order to have a mobility of 1.8 x 105

cm /Vsec with 1018 carriers an effective mass of 0.055 m0 must be used.

In Table II we have shown values of the effective mass derived from

Walker's data (1960) on iodine doped material and our measurements on

one sample shown in Fig. 5. Here we have used the standard theory for

the Seebeck coefficient assuming that the relaxation time is of the form

-C= - - . Values are given for s = 1/2, the value for acoustic mode

lattice scattering, and s = 3/2, the simple theory for ionized impurity

scattering. The values for other scattering mechanisms lie between these

two. Since the predominant scattering mechanism in our sample at 1000 K

is probably acoustic mode lattice with small amounts of optic mode

scattering, a reasonable estimate of the density-of-states mass is 0.2 mo .
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With this mass, a dielectric constant of 360 must be assumed in order

to get agreement between Eq. 2 and our experimental values. In calculating

the effective masses given in Table II, the constant B in Eq. 1 was taken

as 1. If the value of B found by Drabble, Groves, and Wolfe (1958) were

used, the effective masses shown in Table II would be multiplied b", 0.47.

Howe- ar, to be consistent, we have to fit a mobility of 5.9 x 105 instead

of 1.8 x 105. and the dielectric constant required is still 300. Thus

there seems to be three possibilities: (1) Bismuth telluride has a static

dielectric corstant which is much larger than its optical dielectric constant,

(2) the present theory of ionized impurity mobility is not accurate, or

(3) our estimates of the effective mass are too large. A similar situation

has been observed in lead telluride (Allgaier and Scanlon, 1958), From

measurements of the polaron minimum in tunneling experiments on lead

telluride, Hall (1960) has concluded that the static dielectric constant

is not much larger than the optical dielectric constant in this material.

A number of objections to the present theory of ionized impurity

scattering have been expressed (Herring, 1960). However, in our case

the Born approximation should be valid since the dielectric constant

is 100 or larger.

D. Variation of 4.2 0 K Mobility with Carrier Concentration

As shown on Fig. 3, the mobility at 4.2°K varies with carrier

g concentration as n0.28 for "carrier concentrations" less than 5 x 1018

!
I
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and as n- 1 . 2 0 for higher "carrier concentrations." The slope at the lower

carrier concentration agrees with the theory of Eq. 2 within the experi-

mental scatter of the data.

A rapid decrease tn mobility with carrier concentration, similar

to our data for n > 5 x O18 , has been found in PbTe (Kanai, Nii., and

Watanabe, 1961). It has been explained by assuming that the scattering

cross section remains independent of carrier concentration. The theory

of ionized impurity scattering shows a rapid dependence of the relaxation

time on the carrier velocity and thus a rapid variation of scattering

cross section with carrier concentration in degenerate materials.

Vinogradova, et al. (1959) have found that the scattering cross section

for ionized impurities in a 80% Bi 2 Te 3 -20% Bi 2 Se 3 alloy at temperatures

of 100 to 3000 K is independent of electron energy. They explain this by

assuming that the large dielectric constant screens the Coulomb field

sufficiently so that the major scattering is from the core of the impurity

rather than from the Coulomb field of the impurity. This cannot be the

explanation for our results at 4.2K since the theoretical scattering

by the screened Coulomb field alone gives a mobility smaller than that

observed experimentally.

We are tempted to explain the change in slope of the curve of

Fig. 3 as a two band effect. For carrier concentrations less than about

5 x 1018 cm'3, all of the electrons are in one band. At higher concen-

trations, the electrons begin to fill a second band having a higher



effective mass and lower mobility. As donors are added and the total

carrier concentration Ircreases. the density of scattering centers N

becomes larger than the carrier onceitr.ation in the lower band nl,

and the mobil.ty ,f the elec -ocB 1r. the lower band decreases. Also

since the upper band is assumed to have a larger mass, the electrons in

the upper band - ,.U hav? a 1nw.-f %b~ility than those in the lowver band.

Thus the averege mwb±!ty w d', decrease wltb increasing carrier concentration.

Preliminary calculations taking Unto account the proper relation between the

Hall coefficient and the carrier concentration in each band seem to shov

that the rate of reductio , in' mcbiity should be smller than observed

experimentally. However, additional cal,nlations are in progress.

Yates (1959) and Walke: (1960) have buggested that a two band model

would explain some of the features of their work. The fact that the

effective masses shown in Table II for more heavily doped material are

appreciably larger than the masses oalculated for our lightly doped

sample D-13 is also evidence for this model.

Austin and Sheard (1957) have measured the optical energy

gap of BiTe- Bi2Se alloys and find a sharp break in their curve at

Bi 2 Te2. 1Se 0 9. If we extrapolate the curve back to pure Bi 2Te 3 and

assume that this energy difference of about 0.2 eV is the energy

difference between the two conduction bands, we find that the lover

band has a density-of-states of 0. 05mo . This is just the value required

to explain the large mobility.



12

IV. ACKCWLEDGNENTS

We wish to thank G. R. Wagner for carefully performing moat

of the measurements reported here,D.A.Zupon for assistance with crystal

growing, R. C. Miller and A. Sagar for several stimulating discussions,

J. McHugh for growing some of the crystals, and C. B. Satterthwaite for

the Seebeck coefficient data.

REFERENCES

Ailgaier, R. S.., and Scanlon, W. W., 1958, Phys. Rev. 111, 1029.

Austin, I. G., 1958, Proc. Phys. Soc. 72, 5143.

Austin, I. G., 1960, Proc. Phys. Soc. 76, 169.

Austin, I. G., and Sheard, A., 1957, J. Electronics and Control 3, 21146.

Bowley, A. E., Delves, R., and Goldamid, H. J-, 1958, Proc. Phys. Soc. L2, 1401.

Brooks, H., 1955, Advances in Electrnnics and Electron Physics,, edited by

L. Marton (New York: Academic Press).

Chandrasekhar, B. S., 1961, Rev, Sci. Instr. 32, 368.

Cole, M., Bucklow, I. A., and Grigson, C. W. B., 1961, Brit* J. Appl. Phys.

12, 296.

Dingle, R. B., 1955, Phil. Mag. 46, 831.

Drabble, J. R., Groves, R. D., and Wolfe, R., 1958, Proc. Phys. Soc. L1, 1430.

Goldsmid, H. J-, 1958, Proc. Phys. Soc. 71, 633.

Goldsmid, H. J., 1961, J. Appi. Phys. 32, 2198.



13

REFERENCES (continued)

Hall, E. N., 1960, Proceedings of the International Conference on Semiconductor

Physics (Prague: Czechoslovak Academy of Sciences).

Herring, C., 1960, Proceedings of the International Conference on Semiconductor

Physics (Prague: Czechoslovak Academy of Science), p. 63.

Kanai, Y., Nii, R., and Watanabe, N., 1961, J. Appl. Phys. 32, 2146.

Mansfield, R., and Williams, W., 1958, Proc. Phys. Soc. 72, 733.

Offergeld, G., and Van Cakenberghe, J., 1959, J. Phys. Chem. Solids 11, 310.

Satterthwaite, C. B. and Ure, R. W., Jr., 1957, Phys. Rev. 108, 1164.

Sladek, R. J., 1959, private communication; reported by Ure, 1961.

Ure, R. W., Jr., 1961, Thermoelectricity: Science and Engineering, edited by

R. R. Heikes and R. W. Ure (Interscience Publishers, New York, 1961),p. 413.

Vinogradova, M. N., Golikova, 0. A., Efimova, B. A., Kutasov, V. A.,

Stavitskaya, T. S., Stil'bans, L. S., and Sysoeva, L. M., 1959,

Fiz. Tverdogo Tela 1, 1333 [English translation: Soviet Phys.-Solid

State 1, 1224 (1960)].

Walker, P. A., 1960, Proc. Phys. Soc. 76, 113.

Yates, B., 1959, J. Electronics and Control) 6, 26.

i
I
I
I



I Table I

g Temperature Dependence of Mobility in

N-Type Tellurium Doped Bismuth Telluride

Carrier Temperature
Concent tion Dependence

Sample (cmsa of Mobility

ID-13 2.4i x 1017 T 2 .8

M3-1 5.3T27

El-2 3.0 x 118T 2.2

A2-13.4 -1.70

A4-1-5 1.2 x 10 9  T-l7

I u-n. 6.8 T13

Table II

Values for Density-of-States Effective Mass Derived

from Seebeck Coefficient Data at 1000K

Sample Number D-13 27 16 15 10

Source of Data This paper----------------- Walker (1960) ---------

"Carrier Concentration" 2.~4 x io17 1.6 x lo18 6 x lo1 1.6 x 01 9  Z4.x lo019

Imd/mo for s . -1/2 0.26 o.641 0.67 0.96 1.00

md/in for s - 3/2 .07 0.21 0.21 0.31 0.341
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FIGURE CAPTIONS

Fig. 1 Hall coefficient for tellurium doped n-type bismuth telluride.

The symbols are identified on Fig. 2. The Hall coefficient is

measured with the current in the cleavage plane and the magnetic

field perpendicular to the cleavage plane.

Fig. 2 Electron Hall mobility in tellurium doped n-type bismuth telluride.

Samples designated by solid symbols are more homogeneous, i.e.,

the two Hall coefficientb differed by less than 15% and the two

resistivities differed by less than 10%.

Fig. 3 Electron Hall mobility vs "electron concentration" at 4.2°K and

77°K. Yates (1959) measurements at 4.20K on iodine doped samplesi
are designated by a cross. All other points are our measurements

on tellurium doped samples. Samples designated by solid symbols

are more homogeneous than those designated by open or partially

open symbols.

Fig. 4 Electrical resistivity for tellurium doped n-type bismuth

telluride. The symbols are identified on Fig. 2.

Fig. 5 Seebeck coefficient for n-type tellurium doped and p-type zone

refined bismuth telluride.

I
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ABSTRACT

I The absolute Seebeck coefficient, electrical resistivity,

g and thermal resistivity were simultaneously measured on pure bismuth

single crystals of various orientations between approximately 80°K and

I3000 K. Using an overlapping two-band many-valley model, numerical values

for the temperature dependence and anisotropy (where appropriate) of the

I following parameters have been calculated: (1) the overlap energy and the

Fermi energy of the electrons and of the holes, (2) the density of states

effective mass of the electror and of the holes, (3) the separate electronic

and lattice thermal conductivities, (4) the actual index of thermoelectric

efficiency, and the hypothetical "optimum" index of thermoelectric

I efficiency. The calculated electronic thermal conductivity includes

a new term aue to uipolar diffusion.

I
!
!
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INTRODUCTION

Bismuth is a semimetal which has a crystal structure based

on the rhombohedral lattice with two atoms permnit cell. Many of the

electrical and thermal properties of bismuth are anisotropic and can

be described with reference to the trigonal axis and three equivalent

binary axes lying in a plane perpendicular to the trigonal axis.

gThe Jones' zone for bismuth canaccommodate exactly five

electrons per atom, so that there are just enough valence electrons

to fill a band. However, there is an overlap in energy between the

electron and hole bands and a small fraction of the electrons spill

over into a higher zone, even at 0°K. Informtion concerning the band

tstructure of bismuth has been obtained from measuremnts of the de Haas-

van Alphen effect, 1-6 cyclotron resonance, 7 9 plvanomagietic effects I 0 -12

Seebeck coefficient,1 3 piezoresistance, 14 magneto-optical effects,1 5 16

ultrasonic attenuation1 7 and anomalous skin effect. 1 8

We have analyzed our measurements in terms of a parabolic

two-band model. For both the electrons and holes, the constant energy

surfaces are ellipsoids which are arranged in momentu space in accordance

with the rhombohedral symmetry of the bismuth crystal. In our calculations,

we have used Abeles and Meiboom'. 1 0 results for the number of carriers and

the mobility ratios. They used the following parabolic two-band model

which is more specific than ours. The energy surfaces of the holes are

spheroidal with the axis of revolution parallel to the trigonal axis of
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the crystal The energy surfaces of the electrons are ellipsoids, each

one having one of its axes parallel to the trigonal axis and another axis

parallel to the binary axis. De Haas-van Alphen effect, 1 4 cyclotron

resonance 7 -9 and other measurementsl7l 1 8 indicate that the electron

ellipsoids are actually slightly tilted away from the trigonal plane.

However, this should have a negligible effect on our results.

I
I
I
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SEXPERIMNAL

Single crystals of about 0.2 cm2 uniform cross-section and

over 10 cm long were grown in a graphite mold in vacuum, using a

modified Bridgman technique as previously described. 1 3 The bismuth,

of 99.999% purity, was obtained from the American Smelting and Refining

Company. Previous measurements indicated that the Seebeck coefficient

was essentially unaffected by zone refining, thus indicating a high degree

of purity. Measurements on some crystals, as grown, indicated a ratio

of room-temperature to liquid-helium-temperature resistivities of approxi-

mately ninety. Orientations close to the trigonal axis were obtained by

suitable seeding. The orientations of the crystals were determined by

back-reflection Laue photographs1 9 and further checked by measuring the

Seebeck coefficient (o) at 3000K and using a previously published13 graph

of o vs. orientation.

The samples were carefully cut to approximately 1 cm length

with a Jeweler's saw and the ends were lapped flat and parallel. The

samples were etched in nitric acid and the ends were nickel plated.

A low melting point alloy (Cerrolow 117) was used to solder the sample

between the sample heater and cold plug of the apparatus shown in Fig. 1.

The apparatus of Fig. 1 was used to measure the electrical

resistivity, thermal resistivity, and Seebeck coefficient of the

sample. The temperatures were measured with copper-constantan thermo-

couples which were thermally bonded to isothermal regions before being
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brought out of the apparatus. All of the measurements were made with

a Leeds and Northrup K-3 potentiometer and appropriate standard resistors.

The isothermal electrical resistivity was measured by passing

a dc current of about 0.1 amp through the sample. A reversing procedure

was used to eliminate thermoelectric effects. The potential drop across

the sample was measured across the copper leads of the thermocouples in

the sample heater and cold plug. Thus, the measured resistance included

the contact resistance of the soldered joints. In order to demonstrate

that this contact resistance was small, tests were made on the assembled

Isample heater, sample~and cold plug before they were placed in the

apparatus of Fig. 1. Room temperature resistivity measurements with

a standard 4-probe ac apparatus 20 indicated that the contact resistance

and inhomogeneity effects were less than 2%. Using an apparatus pre-

viously described,2 1 potential profile measurements were also made on

g the assembled unit at room temperature. The linear nature of the ourves

indicated that the contact resistance was less than 2% of the sample

Iresistance; that there were no cracks in the sample; and that the

electrical properties were uniform along the length of the sample.

IThe Seebeck coefficient and thermal resistivity were measured

gby establishing a steady state temperature gradient across the sample

and thermally matching the shield shown in Fig. 1. The Seebeck voltage

was measured across the copper leads of the thermocouples. The absolute

i
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Seebeck coefficient of bismuth was found by making a correction for

the small absolute Seebeck coefficient of copper.22 Simultaneously,

the thermal resistivity was determined by measuring the power input

to the sample heater. The stray heat losses 2 3 from the sample heater

(mostly radiation) were determined as a function of temperature in a

separate calibration run and appropriate corrections were made. The

$ total correction, which included small corrections for the thermal

contact resistance 2 3 (< 1%) and small temperature drifts 23 (< 1.5%),

never exceeded 6%.

In order to verify that the effects of cold work were small

in this temperature range, one sample was measured in the usual way and

then was severely strained by bending. Remeasurement showed that the

properties had changed by about 6% at 1000K.

I
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9 RESULTS AND DISCUSSION

The absolute Seebeck coefficient (ca), electrical resistivity

I (p) and thermal resistivity (r) were simultaneously measured between

approximately 800K and 300K on six pure bismuth single crystals of

various orientations. All of these properties are anisotropic. The

rather large anisotropy of the thermal and electrical properties of

bismuth is somewhat surprising since its crystal structure can be

I considered to be rhombohedral with only a slight distortion. from cubic.

Although the electrical and thermal resistivities are tensor quantities,

it is convenient here to use the term "resistivity" to mean the measured

I resistance times area/length and "Seebeck coefficient" to mean the

Seebeck voltage divided by the temperature difference. Then for the

I long thin rod geometry used here, both the electrical and thermal

resistivity obey the Thomson-Voigt 2 4 relation as one would expect from

the uniaxial symmetry associated with the rhombohedral structure:

I
' R .. + (R11 - RI c°s2 (1)

where R is either the thermal or electrical resistivity and 0 is the

angle between the sample axis and the trigonal axis. The subscripts

1 and I denote directions parallel and perpendicular to the trigonal

axis. Due to the anisotropy of the thermal conductivity, the absolute

I Seebeck coefficient shows a deviation from the Thomson-Voigt relation

and obeys the equation
1 3' 25

()2
~1 + (X-l)cos 0
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where X = Kj/Kj j the ratio of the thermal conductivities perpendicular

and parallel to the trigonal axis respectively. The measured values of

p, and r 0 have been used to solve Eq. 1 by the method of least squares to

obtain p1 , p.2 r 1l and r.L as a function of temperature as shown in Figs.

2 and 3. Likewise, the measured values of % have been used to solve Eq.2

to obtain 11 and (x] as shown in Fig. 4. The least squares analysis for

p, r and a gave a "standard error of estimate" which never exceeded 3%.

All measurements are believed to be accurate to within +3%. The Seebeck

coefficient measurements are in excellent agreement with those of

Chandrasekhar. 1 3 The electrical resistivity measurements are in good

agreement with those of other authors10 ' 26, 27 who used methods which

eliminated the electrical contact resistance problem. The thermal con-

ductivity measurements are in good agreement with those of other authors,
27

although the temperature dependence of the present results appears to be

somewhat slower at low temperatures.

In the following sections, several interesting parameters will

be calculated:

(a) The Overlap Energy, Fermi Energies and Density of States Effective Mass

It has been previously shown 1 3 that

(ae)iae + (ah)ia 
(3)(aei + (ah)



I
I

I
I

where i stands for 11 or J, a is the electrical conductivity and the

subscripts e and h refer to electrons and holes respectively. If the

energy dependence of the relaxation time is independent of direction

then the partial Seebeck coefficients, ae and C1., are independent of

gdirection. The anisotropy of a arises from the anisotropic and unequal

carrier mobilities. Assuming parabolic bands, ellipsoidal energy surfaces1

and that the energy dependence of the relaxation time is E 8 then28

(2 )F. + S(e

a -(h)s 2 )

+ 5) F

2 3()~ + ~ + s)(th)- ()

where the Fermi integrals are given by

I
Fj( ) fe + 1 (6)

and the reduced Fermi energies are

+/eE W /T /10 f
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I

Jh

where Ef and E are the Fermi energies of the electrons and holes measured
f' f

from the edges of their respective bands, The overlap energy, E0 , is

measured fromthe top of the valence band to the bottom of the conduction

band. For intra-valley acoustical mode lattice scattering, which is

assumed in these 2alculations, s is - 1/2. Abeles and MeiboomI 0 have

calculated the anisot-'opi: mobilities of the two types of carriers at

80° and 300K as showu in Table 1. From their data, the mobility ratios

( e/ ) appear to be very weakly temperature dependent. It was assumed

that the indiidLaJl mobilities parallel a.nd perpendicular to the trigonal

axis had the f-nrn i .- cTy . The results are very insensitive to this

assumption. Using Abeles and Meiboom's data, we solved this equation
,

for the constants c and y and the mobility ratios were calculated at

intermediate temperatures. With these values and the value of all and

a, Eq. 3 was solved for Se and as functions of temperature as shown

in Fig. 5. The values of Cxe and a h were inserted into Eqs. 4 and 5 and

te and h were obtained as a function of temperature by the use of tables

of Fermi integrals. Using these values, we calculated the Fermi energies

and the overlap energy from Eq. 7. The results are shown in Fig. 6. The

equations and sign conventions used here are the same as those commonly

used in the treatment of semiconductors. In our notation, Eo should be

For both the electrons and holes, values of y of approximately-e.l
were found. The significance of this will be discussed later along
with the scattering mechanism.
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a negative number for the case of an overlap of the valence and conduction

bands. The negative value found here is an independent determinatiQn that

the conduction and valence bands overlap in bismuth. In other materials29 ,30

where there is a question as to whether there is an energy gap or energy

overlap, this method might be used to give a definite answer. The overlap

energy is a sensitive function of temperature as shown in Fig. 6. This is

not unexpected since E0 depends on the lattice spacing which is temperature

sensitive through thermal expansion. Also, it is well known that the energy

gap in semiconductors is generally a function of temperature.

The total number (N) of electrons (or holes) per unit volume

has been calculated by Abeles and Meiboom at 800K and 300°K as shown

in Table 1. Assuming that the bands are parabolic 28

N = (mt) 1/2 (8)

where m T is defined by Eq. 8 and may be called the "total density of

states effective mass" in units of mo . This parameter, which is isotropic

and independent of the number of ellipsoids, has been calculated at 80°KI
and 3000 K (Tables 2 and 3) using the values of g and N. This parameter

will be of interest in discussing the thermoelectric efficiency later on.

Similarly, the density of states effective masses "per ellipsoid" for the

electrons and holes were calculated at 800K and 300°K (Tables 2 and 3)

from the equation



(( =( kT)-((2)m2 F (9)

where n is the number of ellipsoids, N/n is the number of electrons or

holes per ellipsoid per unit volume, and m is the density of states

effective mass per ellipsoid in units of m . In this approach, n is

a variable interger. This m corresponds to the effective mass which

is derived from the de Haas-van Alphen effect, cyclotron resonance and

other methods. These measurements determine the components of the reci-

procal mass tensor of an individual ellipsoid, but do not readily yield

information concerning the number of ellipsoids.

Electrons: The Fermi energy of the electrons has been determined

by Shoenberg1> 3 from de Haas-van Alphen effect measurements. The present

resulTs (Fig. 6) are in excellent agreement with his value of Ef = 0.0177 ev

at 4°K. The density-of-states effective mass of the electrons per ellipsoid

has been calculated from the components of the effective mass tensor as

determined by other methdl'& of these other measurements were made

at liquid helium temperatures. Table 2 presents the results; where

necessary, the value of Ef was assumed to be 0.0177 ev. The density-of-

states effective mass per ellipsoid that is determined by the present work

depends on whether a 3 or 6 ellipsoid model is assumed. As can be seen

from Table 2, both values are in reasonable quantitative agreement with

the other measurements. We are unable to choose between 3 or 6 ellipsoids
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I
because of the divergence of the other results. From the present results

I (Table 2), it appears that the density-of-states effective mass of the

electrons is independent of temperature between 0°K and 3000K. This

indicates that the electron band is parabolic.3 1

I
Holes: The Fermi energy of the holes has been determined by

I Brandt 6 from de Haas-van Alphen effect measurements. Our low temperature

results agree withis value of Eh = 0.0156 ev. Brandt 6 has also found
f

m h = 0.115 io, which is in excellent agreement with our low temperature

value that was calculated assuming one hole spheroid (Table 3). This

agreement is evidence that the energy surface for the holes is described

by only one spheroid .32 From anomalous skin effect measurements and

with the assumption that there are two hole spheroids, Smith 1 8 has found

values of the components of the reciprocal mass tensor divided by the

hFermi energy. Using Brandt's value of Ef = 0.0156 ev with Smith's data,

one finds m h 0.1 m.

From low temperature specific heat measurements,18,33 estimates

o and Eh ).001 ev have been mde. Recent galvanomagneticof Mh 2f 1 m Ef 3
and thermomagnetic experiments by Sybert, Grenier and Reynolds 3  indicate

the existence of two hole bands. The uppermost valence band has a high

mobility and presumably a low effective mass. The lower valence band

I has a lower mobility and presumably a higher effective mass. Thus it

I
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seems reasonable that the "dominant" hole band has a light effective
mass as found by Galt, et al., 7 Chandrasekhar 13 Brandt6 and Smith18

(as modified above), Pfesumably then, it is this lower heavy-iass band

which contributes to the specific heat. Also, this additional band may

be the cause of the temperature dependence of m h which we have observed.

From the temperature dependence of Ef (Fig. 6), it seems that this extra

hole band plays a role in the transport properties above approximately

200°K.

Scattering Mechanism: Our results are sensitive to the assumption

of intra-valley carrier scattering by acoustical mode lattice waves

(s = - 1/2). Although they are not presented, we have also done the

calculations assuming that s = + 1/2. However, the Fermi energies of

both the electrons and holes as determined by the de Haas-van Alphen

measurements " are in agreement with our results only if a value of

s = - 1/2 is assumed. Thus, at low temperatures, it appears that both

the electrons and holes are predominantly scattered by acoustical mode

lattlce waves as one wou~d expect. For such a case, theory predicts

* cT - 1 5 . As previously described, however, we have found V OT

from Abeles and Meiboom's data. This discrepancy is probably due to the

effect of the second valence band. However, it may also be due to non-

parabolic hole band(s), the onset of optical mode lattice scattering or

inter-valley effects. In any event, our treatment does not take these

higher temperature effects into account.
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(b) The Electronic and Lattice Thermal Conductivities

It was assumed that the measured thermal conductivity is

the sum of the lattice thermal conductivity (KL) and the total electronic

thermal conductivity (KE)'

K = KL+ (o)

For the present model, the total electronic thermal conductivity is

given by the sum of three terms: 3 5 (1) the ordinary thermal conductivity

due to electrons alone, Ke, (2) the ordinary thermal conductivity due

to holes alone, Kh' and (3) the transport of heat due to bipolar diffusion,Ke.

KE = Ke + Kh + Keh (11)

The ordinary thermal conductivities have been extensively treated in

the literature. 2 8  However, the bipolar diffusion term for the case of

a semi-metal with overlapping bands has only recently been realized3
-

-

although the analogous situation in semiconductors is well known.

Briefly this term is present for the following reason. The thermal

conductivity is defined as the heat flux divided by the temperature

* As previously discussed, there really appear to be more than two

active bands in bismuth. Therefore, there will be other term in
ci. However, these extra terms will be small and we have done the
Iculations on the two-band model.
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ggradient when the total electrical current is zero. The ordinary terms

give the heat flow contributions of the electrons and holes separately

when their individual electrical currents are zero. For materials with

carriers of both signs, there is an additional term which arises because

the individual electrical currents are not zero although the total electri-

cal current is zero. This effect may be thought of as the transport of

the "heat of formation" of electron-hole pairs which diffuse from the hot

region to the cold. From our previous calculations, it is possible to

evaluate all three terms, which are28 ,35

=T( )[() + T L)(a 11 - a.)2 (12)

where

(s + 7/2)F s  5 /2(1) (s + 5/2)F. + 3/2(1 (2l

,Y(O =-(s + 3/2)F 
l 

12(t) (s + 31)F s + 12()..

The results for the principal directions are shown in Figs. 3, 7 and 8.
k2

The values of (!) y(t) that were found from Eq. 13 and used

in calculating K0 and K h are shon in Table 4. These values of e/ T

and K h/hT are considerably different from the "usual Lorenz Number"

of 2.45 x 10'8(volts/C) 2 , which only holds in the degenerate approxi-

mation. The carriers in bismuth must be described by the exact Fermi-

Dirac statistics and, in such a case, 7(t) is a function of the Fermi

level and the scattering mechanism as is given in Eq. 13. The energy
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dependence of the relaxation time has been assumed to. be independent of

direction, which implies that 7(g) is isotropic. In Table 41 it can be

seen that 7(te) - 7(. ). Thus, letting 7 - y(te) = 7(th), Eq. 12 can

rewritten as

-- e 7 b7 ( -" e ) 
2  (

In order to compare our r~sults with earlier measurements on bismuth

crystals, the "pseudo-Lorenz Number," L, has been calculated from our

data as shown in Table 4. This quantity, which presumably is the one

determined experimentally in the work discussed below, is defined as

L -(

Now, if the bipolar term were not present in Eq. 14" L would be

isotropic. However, from magnetoresistance and magneto-thermal

conductivity measurements, Gruneisen and Gielessen36 have found that

L is anisotropic. The bipolar term (Keh) provides such an anisotropic

contribution to L because the factor ceh/ is anisotropic. The

qualitative agreement between the present calculations and Gruneisen

and Gielessen's measurements is strong evidence for the existence of

the bipolar contribution to the electronic thermal conductivity.
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The magnetoresistance and magneto-thermal conductivity measure-

ments of Gruneisen, Rausch and Weiss 37 at 800 K perpendicular to the tri-

gonal axis, yield a value of L in reasonable agreemcnt with ourresults.

It is very interesting that the value of L found by Gruneisen, Rausch and

Weiss, as well as some of those calculated here (Table 4), are close to

the "usual Lorenz Number" -- a pure accident! The agreement is merely

due to the fortuituous combination of the bipolar term and the ordinary

terms properly derived with exact Fermi-Dirac statistics. The values of

L obtained by de Haas, Gerritsen and Cape138 by saturation magneto-thermal

conductivity measurements at 80 0K parallel to thetrigonal axis are not in

agreement with our calculations. However, their particular type of measure-

ment may not be considered a satisfactory method of separating outthe

electronic thermal conductivity. In view of the present situation, careful

experimental and theoretical treatments of magnetoresistanca and magneto-

thermal conductivity would be valuable, particularly at high fieids.

The lattice theral conductivity was calculated from Eq. 10

for each of the principal directions. The lattice thermal resistivity,

which is the scalar reciprocal of the conductivity for the principal

directions, is shown in Fig. 9 as a function of temperature.

Theoretically, the lattice thermal conductivity is given

roughly by

KL i 1/3 cv. (16)
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where c is the lattice specific heat per unit volume, v is the velocity

of sound and X is the phonon mean free path. The lattice specific heat

of bismuth is approximately given by the Debye theory with a Debye tempera-

ture (@) of 120 °K. The velocity of sound3 9 is essentially independent of

temperature and it is anisotropic, which at least in part accounts for the

anisotropy of the lattice thermal conductivity. For an isotropic solid

above the Debye temperature, loffe40 has recently proposed that for

phonon-phonon Umklapp scattering that

T
1 rd
- = A IcdT (17)

where A is a constant for a given material. The phonon mean free path

at each temperature was roughly calculated from Eq. 16 for the principal

directions. The temperature dependence of X obtained in this way was

found to follow Eq. 17 within the rather poor precision of the comparison.

Above the Debye 9, the temperature dependence of the lattice thermal

resistivity is essentially contained in the 1/% factor. At these tempera-

tures., c is nearly constant and it can be shown that the integral in

Eq. 17 is proportional to (T - 0/3). Thus, above the Debye 0, Ioffe4 0

proposes that the lattice thermal resistivity should approach

rL O(T - 0/3) * (18)
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According to Eq. 18, a plot of lattice thermal resistivity versus

absolute temperature should approach a straight line which should

extrapolate back to T =/3. From Fig. 9, it can be seen that our

results are in better agreement with Eq. 18 than with older theories

Iwhich predict that for T > 0, the lattice thermal resistivity should

I extrapolate to zero at OK. However, the agreement with loffe's theory

is only qualitative. As one would expect from Ioffe's ideas, there is

a deviation from Eq. 18 in Fig. 9 around the Debye temperature.

I(c) Thermoelectric Efficiency

The thermoelectric "index of efficiency" (ZT) is given by 2

ZT = ()T (19)

I This parameter, which has been calculated for the two principal

orientations from our data, is shown in Fig. 10. For real bismuth,

the maximum value of Z occurs parallel to the trigonal axis.

Since the macroscopic parameter Z is a sensitive function

of the carrier concentrations, it is convenient to speak of a

"hypothetical optimum index of efficiency" (Z0T). Briefly, Z0 occurs

when only one type of carrier is present and the Fermi level is

adjusted to yield an optimum value of Z. The presence of only one

I type of carrier ensures that the Seebeck coefficient (Eq. 3) is a

I
I
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maximum and that thermal conduction by bipolar diffusion is essentially

zero. It can be shown 2 8 that Z T is a monotonically increasing function

of the microscopic material parameter (6) defined as

= 5/2( mT * 3/2( i)(0
M T (20)

where c is the classical carrier mobility, which is related to the

actual mobility by the relation

(s + 1/2)F 1/2(t
T1(27'F(s + 1/2)(t (1

From the data previously discussed and Eqs. 20 and 21, P has been calculated

assuming that kLc' m T' and KL are unchanged in meeting the physical require-

ments mentioned above. Knowing P, the hypothetical "optimum" index of

efficiency (Z0 T) was obtained from graphs published by Ure. The results

for the two principal orientations are shown in Fig. 11 for -type material.

The results for P-type material do not look promising and are not presented.

The anisotropy of Z T (-1.6:1) arises from the anisotropic

nature of the ratio e/kL. In addition to the anisotropy of LeACll the

larger anisotropy of ZT (-6.5:1) in real bismuth is due to the anisotropy

of the absolute Seebeck coefficient and thermal conduction by bipolar

diffusion. The anisotropy in a and K eh is, In turn, due to the aniso-

tropy in the mobility ratios, pe/Ph .
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The Z of real bismuth Is considerably below Z0 primarily because

of the presence of the holes which adversely effect c and KE. Also, the

electron concentration is too high to give the optimum Z. By suitable

alloying with antimony (il0%), the bands can be separated and a discrete

energy gap introduced. 42 With appropriate N-type doping, the deleterious

effect of the holes can be minimized and the electron concentration can be

adjusted to yield an optimum Z. Experiments of this type by Smith and

Wolfe 4 3 indicate that reasonably high values of ZT can be obtained. In

fact, it is conceivable that a Bi-Sb alloy with suitable doping my yield

a value of ZT higher than the Z T shown in Fig. ll. Due to the differenceO

in the phonon and electron wavelengths, scattering by Sb atoms my lower

L more than 4e and thus increase the ratio e and ZoT. This argument
4 4

will be particularly true at low temperatures, and indeed. this appears

to be the case experimentally. 43

It has been argued 45 that anisotropic semidonductors mybe

apromising area for the search of thermdelectric materials in spite of

the fact that the high mobility direction will probably coincide with

the high lattice thermal conductivity direction. In bismuth, at least,

the high electron mobility direction coincides with the low lattice

thermal conductivity direction. This fact mikes the search for good

thermoelectric materials among anisotropic materials seem all the

more promising.
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SUMMARY

Our measurements have been analyzed in terms of a parabolic

two-band multi-valley model, where the two bands overlap. However,

other recent work1 2'34 indicates that there really are two hole bands.

This, together with the present results, indicates that:

(1) The electrons are described by one band with either

three or six ellipsoids. The electron band is parabolic.

(2) There are two non-degenerate hole bands.34 The higher

band, which is dominant at low temperatures, is described by a singleo

spheroid with a high mobility,10 a low density of states effective

mass6 s7,1 3 q-.1 o) , and a Fermi energy6 comparable to that of
Mh 0

the electrons(Eh 90.016 ev at 800K). The lower hole band34 has a

lower mobility, a higher density of states effective mass, and a

lower Fermi energy.

(3) The mngnitude of the energy overlap between the electron

band and the highest hole band is an increasing function of temperature.

Thus the Fermi energies are a function of temperature.

(4) The electrons and holes are predominantly scattered by

acoustical mode lattice waves at low temperatures.

(5) The transport properties of bismuth can be treated with

the equations developed for semiconductors, provided that exact Fermi-

Dirac statistics are used. There are undoubtedly other 66m-metals

which can be successfully treated with the present methods.

I
I
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(6) In bismuth, there is a sizeable additional term in the

electronic thermal conductivity due to bipolar diffusion. Up till now,

this effect has been overlooked. Between 100°K and 3000 K, thermal con-

duction by electrons and holes is the dominant mechanism.

(7) The temperature dependence of the lattice thermal

resistivity is better described by the recent ideas of loffe than

by older theories which predict an extrapolation to zero at O°K.

(8) From the experiments of Smith and Wolfe43 and from

this study of pure bismuth, it appears that Bi-Sb alloys with appro-

priate doping will be of practical thermoelectric interest. In bismuth,

the high electron mobility direction coincides with the low lattice

thermal conductivity direction. This fact makes the search for good

thermoelectric materials among anisotropic semiconductors and semi-

metals seem all the more promising.
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Table 1. The numberasd mobility of electrons and holes in bismuth

according to Abeles and Meiboom. 1 0 N = P is the number of electrons

or holes per cm3 . The 'stdnote mobilities in cm2 statvolt "I sec "I .

The subscripts e and h denote electrons and holes respectively, and

thesubscripts 11 and j indicate directions parallel and perpendicular

to the trigonal axis respectively.

300 0K Book

N, P x 10"18  2.2 .46

(ge)II x 1o 6  5.7 100.

(Ie) x 10-6 4.87 85.6

(h) I x 106 .62 10.

(901 x 10-6 2.3 37.

(le/'h) i 9.19 10.0

(Pe/gh)..l 2.12 2.31
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Table 4. The ratio of the carrier contributions to the thermal aAd'

electrical conductivities. Equation 13 was used to calculatek 2 k2
Ke/e

T = () (e,) and Kh/ahT 2() 7(h). Values for the "pseudo-

I Lorenz nwnber," L -K/CT, were calculated from Eqs. 12 and 13 and

I include the bipolar term of the total electronic therml conductivity.

I T("K) Ke/0eT2 Kh/ahT. L1 , _ Li= )
(v/C) (/ov/O C)2 (V/fc) 2

100 1.85 x 1l8 1.84 x 10-8  2.30 x 10-8  2.98 x 108

150 1.79 1.75 2.42 3.35

200 1.78 1.74 2.45 3.4

250 1.79 1.79 2.38 3.26

300 1.81 1.88 2.29 3.00

I
I
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FIGURE CAPTICWS

Fig. 1. Schematic diagram of the apparatus for measuring

a, p and K. The sample was soldered between the sample heater and the

cold plug. For Seebeck coefficient and thermal resistivity measurements,

the temperature of the thermal shield was matched to that of the sample

heater. The parts shown were suspended and evacuated to 10- mm Hg in a

can which was placed in an appropriate low temperature bath. The overall

temperature was adjusted with a heater in the heat sink.

Fig. 2. Electrical resistivity vs. temperature for pure

bismuth single crystals; p l and p1 were calculated by fitting Eq. 1

to the data.

Fig. 3. The total measured thermal conductivity (K) and

the total calculated electronic thermal conductivity (K.) vs. temperature

for pure bismuth single cr~stals. K andK were calculated

by fitting Eq. 1 to the data. ¢K),I and I~ )were calculated from

Eqs. 11-13.

Fig. 4. Absolute Seebeck coefficient vs. temperature for

pure bismuth single crystals; a,, and aj were calculated by fitting

Eq. 2 to the data.
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FIGURE CAPTIONS (continued)

Fig. 5. The isotropic partial Seebeck coefficient of the
of thn

electrons (a e) andAholes (ah) vs. temperature for pure bismuth single

crystals. The dotted lines are extrapolated to zero at O°K.

Fig. 6. The overlap energy (E0 ) and the Fermi energy of the

electrons (E ) and holes (Ef) vs. temperature for pure bismuth single

crystals.

Fig. 7. The individual contributions to the total electronic

thermal conductivity (KE) for pure bismuth single crystals perpendicular

to the trigonal axis. The ordinary thermal conductivity due to electrons

alone (Ke), the ordinary thermal conductvitv due to holes alone (Fh),

and the thermal conductivity due to bipolar diffusion (eh ) were calculated

from Eqs. 11-13. For this orientation, (te/ h)j V 2.

Fig. 8. The individual contributions to the total electronic

thermal conductivity (ICE) for pure bismuth single crystals parallel to

the trigonal axis. The ordinary thermal conductivity due to electrons

alone (Ke), the ordinary thermal conductivity due to holes alone (ch) ,

and the thermal conductivity due to bipolar diffusion (Keh) were cal-

culated from Eqs. 11-13. For this orientation, ( e/ 4L = 1o.
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FIGURE CAPTIONS (continued)

jFig. 9. The calculated lattice thermal resistivity vs.

temperature for pure bismuth single crystals. The scatter at the

Ihigher temperatures is due to the fact that the lattice thermal
g conductivity is the difference between two large nmbers in Eq. 10

as can be seen in Fig. 3.I
Fig. 10. The index of thermoelectric efficiency vs.

Itemperature for pure bismuth single crystals.
I

Fig. 11. The hypothetical optimm index of thermoelectric

efficiency vs. temperature for "optimized N-type bismuth crystals."
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Thermal Shield

Sample Heater

Sample

Cold Plug

Heat Sink

e Denote Cu-Const Thermocouples
Fig. 1

Schematic diagram of the apparatus for measuring a, p and K. The sample
was soldered between the sample heater and the cold plug. For Seebeck coefficient and

thermal resistivity measurements, the temperature of the thermal shield was matched to

that of the sample heater. The parts shown were suspended and evacuated-to i0 "5- m Hg

in a can which was placed in an appropriate low temperature bath. The over&fl temperature

I was adjusted with a heater in the heat sink.

I
I



1.5 Guava Osso

1.0

E1

I EL

0 0 eprtre0K 0 0

Fi.
Elcria reitvt4s-eprauefrpr imt

sigecytl;piadp eecluae yftigE.1t h aa



.15

E

0 .000

E

O0 100 200

Temperature (0K)

Fig. 3
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